
GCE AS MARKING SCHEME

SUMMER 2022

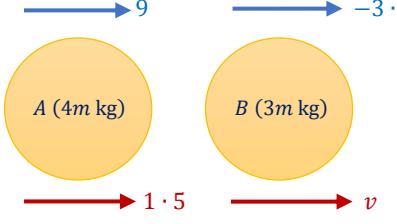
**AS (NEW)
FURTHER MATHEMATICS
UNIT 3 FURTHER MECHANICS A
2305U30-1**

INTRODUCTION

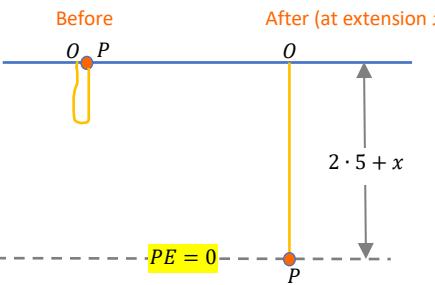
This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

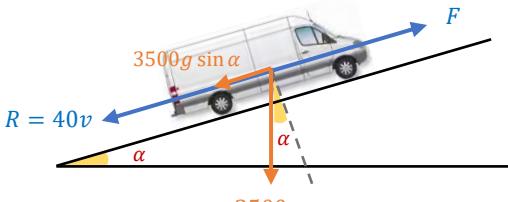
WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

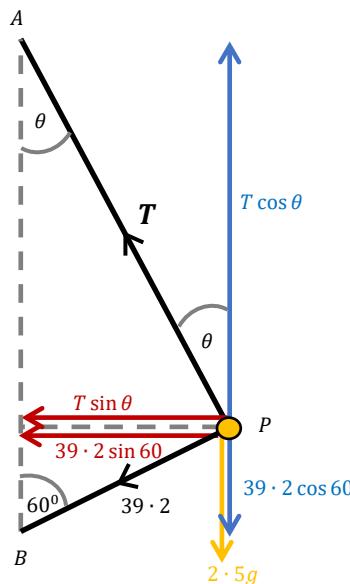

WJEC GCE AS FURTHER MATHEMATICS

UNIT 3 FURTHER MECHANICS A


SUMMER 2022 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	Angular velocity $\omega = \frac{v}{r}$ $\omega = \frac{8}{2}$ $\omega = 4 \text{ (rad s}^{-1}\text{)}$	M1 A1 [2]	Used cao
(b)	N2L towards centre O Tension in the string $T = 1 \cdot 2a$ $T = 1 \cdot 2 \times \frac{8^2}{2}$ or $T = 1 \cdot 2 \times 4^2 \times 2$ $T = 38 \cdot 4 \text{ (N)}$ or $\frac{192}{5}$	M1 A1 [2]	Used with $a = \left\{ \begin{array}{l} \frac{v^2}{r} \\ \omega^2 r \end{array} \right.$ FT their ω from (a)
Total for Question 1			4


Q2	Solution	Mark	Notes
(a)	<p>Using $KE = \frac{1}{2}mv^2$ with $m = 60, v = 7 \cdot 8$</p> $KE = \frac{1}{2}(60)(7 \cdot 8)^2$ $KE = 1825 \cdot 2 \text{ (J)} \quad \text{or} \quad \frac{9126}{5}$	M1 A1 [2]	Used cao
(b)	<p>Using expression for PE or KE</p> <p>At start (platform),</p> $PE = 60g(10) \quad (= 600g = 5880 \text{ J})$ <p>At end (water),</p> $KE = \frac{1}{2}(60)v^2 \quad (= 30v^2)$ <p>Conservation of energy</p> $1825 \cdot 2 + 5880 = 30v^2$ $(7705 \cdot 2 = 30v^2)$ $v^2 = 256 \cdot 84 \quad \text{or} \quad \frac{6421}{25}$ $v = 16 \cdot 0262 \dots \approx 16 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 M1 A1 A1 [6]	Used, all terms, allow sign errors All correct, oe FT KE from (a) Convincing, cso
(c)	<p>Work-energy principle</p> $1825 \cdot 2 + 5880 = \frac{1}{2}(60)(13)^2 + E_{lost}$ $(7705 \cdot 2 = 5070 + E_{lost})$ $E_{lost} = 2635 \cdot 2 \text{ (J)} \quad \text{or} \quad \frac{13176}{5}$	M1 A1 A1 [3]	Used, all terms, allow sign errors All correct, oe FT KE from (a) FT PE from (b) FT their KE and PE
	<p><u>Alternative Solution</u></p> <p>Taking a difference in KE</p> $E_{lost} = \frac{1}{2}(60) \left(\frac{6421}{25} \right) - \frac{1}{2}(60)(13)^2$ $E_{lost} = 2635 \cdot 2 \text{ (J)} \quad \text{or} \quad \frac{13176}{5}$	(M1) (A1) (A1) ([3])	At least one v^2 correct All correct, oe Accept $\frac{1}{2}(60)(16)^2 = 7680$ $E_{lost} = 2610 \text{ (J)}$ for $v = 16$
Total for Question 2			11


Q3	Solution	Mark	Notes
(a)	<p>Conservation of momentum $(9)(4m) + (-3 \cdot 5)(3m) = (1 \cdot 5)(4m) + (v)(3m)$ $25 \cdot 5 = 6 + 3v$ $v = 6 \cdot 5 \text{ (ms}^{-1}\text{)}$</p>	M1 A1 A1 [3]	Attempted. Allow 1 sign error All correct Convincing
(b)	<p>Restitution</p> $6 \cdot 5 - 1 \cdot 5 = -e(-3 \cdot 5 - 9)$ $5 = 12 \cdot 5e$ $e = \frac{2}{5}$	M1 A1 A1 [3]	Attempted. Allow 1 sign error All correct, oe cao
(c)	<p>Change in momentum = 36</p> $(4m)(9 - 1 \cdot 5) = 36 \quad (30m = 36)$ $m = 1 \cdot 2$	M1 A1 A1 [3]	Correct equation, oe $(3m)(6 \cdot 5 - -3 \cdot 5) = 36$ cao
(d)	<p>Valid reason, eg. Radii are equal Velocities are parallel to line of centres</p>	E1 [1]	
Total for Question 3			10

Q4	Solution	Mark	Notes
(a)	$(9\mathbf{i} + 6\mathbf{j} - 12\mathbf{k}) + (6\mathbf{i} - 7\mathbf{j} + 3\mathbf{k}) + \mathbf{F}_3 = 0$ $\mathbf{F}_3 = -15\mathbf{i} + \mathbf{j} + 9\mathbf{k} \quad (\text{N})$	M1 A1 [2]	
(b)	(i) $\mathbf{AB} = \mathbf{r}_B - \mathbf{r}_A = (8\mathbf{i} - 5\mathbf{j} - \mathbf{k}) - (2\mathbf{i} - 9\mathbf{j} + 7\mathbf{k})$ $= 6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}$ $\mathbf{F}_1 = \frac{3}{2}\mathbf{AB} \quad \text{or} \quad \mathbf{AB} = \frac{2}{3}\mathbf{F}_1 \quad (\because \text{ parallel})$	M1 A1 A1	or BA oe, cao C onvincing
	(ii) Work done by $\mathbf{F}_1 = \mathbf{F}_1 \cdot \mathbf{AB}$ $= (9\mathbf{i} + 6\mathbf{j} - 12\mathbf{k}) \cdot (6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k})$ $= (9)(6) + (6)(4) + (-12)(-8)$ $= 174 \quad (\text{J})$	M1 A1	Used. FT AB FT their AB
	(iii) Work done = change in KE $174 = \frac{1}{2}(0 \cdot 5)v^2 - 0$ $v = 26 \cdot 38(18 \dots) \quad (\text{ms}^{-1})$	M1 A1 [7]	FT their '174' $v = \sqrt{696} = 2\sqrt{174}$ FT their '174'
Total for Question 4		9	

Q5	Solution	Mark	Notes
(a)	<p>Using expression for $PE = mgh$ or $EE = \frac{1}{2}kx^2$</p> <p>Loss in $PE = 2g(2.5 + x) (= 5g + 2gx)$</p> <p>Gain in $EE = \frac{\lambda x^2}{2(2.5)} = \frac{30gx^2}{2(2.5)} (= 6gx^2)$</p> <p>Gain in $KE = \frac{1}{2}(2)v^2 (= v^2)$</p> <p>Conservation of energy</p> $v^2 + 6gx^2 = 5g + 2gx$ $v^2 = g(5 + 2x - 6x^2)$	M1 A1 A1 B1 M1 A1 [6]	Used with PE, KE and EE All terms, allow sign errors M0: PE = 5g alone Convincing
(b)	<p>At maximum extension, $v = 0$ $0 = g(5 + 2x - 6x^2)$</p> $6x^2 - 2x - 5 = 0$ <p>Attempting to solve</p> $x = \frac{2 \pm \sqrt{124}}{12}$ $x = 1.09(4627 \dots) \quad (\text{or } x = -0.76(1294 \dots))$	M1 m1 A1 [3]	Used $x = \frac{1 \pm \sqrt{31}}{6}$ from calculator cao $x = -0.76 \dots$ clearly discarded
(c)	<p>(i) When P attains its maximum speed, $a = 0$ so that Tension in $OP = 2g$</p> $\frac{30gx}{2.5} = 2g$ $x = \frac{1}{6} \text{ (m)}$ <p><u>Alternative Solution to (i)</u></p> <p>(i) Differentiating to find for maximum v^2 (or v)</p> $\frac{d(v^2)}{dx} = 0$ $g(2 - 12x) = 0$ $x = \frac{1}{6}$	M1 A1 A1 (M1) (A1) (A1)	Hooke's Law used with $T = 2g$ Condone the following incorrect notation $\frac{dv}{dx} = g(2 - 12x)$ oe

<p>(ii) Sub. $x = \frac{1}{6}$ into $v^2 = g(5 + 2x - 6x^2)$ Maximum speed is $7 \cdot 11(57103 \dots)$ (ms⁻¹)</p>	<p>M1 A1 [5]</p>	<p>FT their $x \geq 0$ $v = \sqrt{\frac{31g}{6}} = \sqrt{\frac{1519}{30}}$. FT their $x \neq 0$ for $v^2 > 0$</p>
<p>Total for Question 5</p>		<p>14</p>

Q6	Solution	Mark	Notes
(a)	<p> $R = 40v$ $3500g \sin \alpha$ α $3500g$ </p> <p> $F = \frac{P}{25}$ Using N2L up slope $F - R - mg \sin \alpha = ma$ $\frac{P}{25} - 40(25) - 3500g \left(\frac{3}{49}\right) = 3500(-0 \cdot 2)$ $P = 60\ 000 \text{ (W)} \quad \text{or} \quad 60 \text{ (kW)}$ </p>	B1 M1 A1 A1 A1 [5]	$3500g \left(\frac{3}{49}\right) = 2100$ All forces, dim. correct M1: Allow $mg \cos \alpha$ or sign errors, but not both Correct equation FT their F cao
(b)	<p> $F = \frac{40 \times 1000}{20} \quad (= 2000)$ Using N2L with $a = 0$ $F - R - mg \sin \alpha = 0$ $2000 - 40(20) - 3500g \sin \alpha = 0$ $\sin \alpha = \frac{12}{343} = 0 \cdot 03498 \dots$ $\alpha = 2^\circ$ </p>	B1 M1 A1 A1 A1 [5]	si All forces, dim. correct M1: Allow $mg \cos \alpha$ or sign errors, but not both Correct equation FT their F cao
Total for Question 6		10	

Q7	Solution	Mark	Notes
(a)	<p>Resolving vertically,</p> $T \cos \theta = (39 \cdot 2) \cos 60 + 2 \cdot 5g$ $T(0.8) = (39 \cdot 2)(0.5) + (2 \cdot 5)(9.8)$ $T = 55.125 \text{ (N)}$	M1 A1 A1 A1 [4]	$\sin \theta = 0.6$ $\cos \theta = 0.8$ All forces, dim. correct -1 each error cao
(b)	<p>Using N2L towards C,</p> $T \sin \theta + (39 \cdot 2) \sin 60 = 2 \cdot 5a$ $(55.125)(0.6) + (39 \cdot 2)\left(\frac{\sqrt{3}}{2}\right) = (2 \cdot 5) \omega^2 r$ $(55.125)(0.6) + (39 \cdot 2)\left(\frac{\sqrt{3}}{2}\right) = (2 \cdot 5) \omega^2 (0.9)$ $\omega^2 = 29.78808 \dots$ $\omega = 5.45 (78463 \dots) \text{ (rad s}^{-1}\text{)}$	M1 A1 m1 B1 A1 [5]	All forces, dim. correct Correct equation $a = \frac{v^2}{r}$ $r = 1.5 \sin \theta$ $r = 1.5 \times 0.6 = 0.9$ cao
(c)	$v = \omega r$ $v = 5.45 \dots \times 0.9$ $v = 4.91206 \dots$ $KE = \frac{1}{2}(2 \cdot 5)(4.91206 \dots)^2$ $KE = 30.16 (0438 \dots) \text{ (J)}$	M1 m1 A1 [3]	FT ω and $r \neq 1.5$ FT v cao
Total for Question 7		12	